3.508 \(\int \frac{A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac{7}{2}}(c+d x) \sqrt{a+a \cos (c+d x)}} \, dx\)

Optimal. Leaf size=191 \[ \frac{2 (13 A-5 B+15 C) \sin (c+d x)}{15 d \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}}-\frac{\sqrt{2} (A-B+C) \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}}\right )}{\sqrt{a} d}-\frac{2 (A-5 B) \sin (c+d x)}{15 d \cos ^{\frac{3}{2}}(c+d x) \sqrt{a \cos (c+d x)+a}}+\frac{2 A \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x) \sqrt{a \cos (c+d x)+a}} \]

[Out]

-((Sqrt[2]*(A - B + C)*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])])/(
Sqrt[a]*d)) + (2*A*Sin[c + d*x])/(5*d*Cos[c + d*x]^(5/2)*Sqrt[a + a*Cos[c + d*x]]) - (2*(A - 5*B)*Sin[c + d*x]
)/(15*d*Cos[c + d*x]^(3/2)*Sqrt[a + a*Cos[c + d*x]]) + (2*(13*A - 5*B + 15*C)*Sin[c + d*x])/(15*d*Sqrt[Cos[c +
 d*x]]*Sqrt[a + a*Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.559269, antiderivative size = 191, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 45, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.111, Rules used = {3043, 2984, 12, 2782, 205} \[ \frac{2 (13 A-5 B+15 C) \sin (c+d x)}{15 d \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}}-\frac{\sqrt{2} (A-B+C) \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}}\right )}{\sqrt{a} d}-\frac{2 (A-5 B) \sin (c+d x)}{15 d \cos ^{\frac{3}{2}}(c+d x) \sqrt{a \cos (c+d x)+a}}+\frac{2 A \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x) \sqrt{a \cos (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(7/2)*Sqrt[a + a*Cos[c + d*x]]),x]

[Out]

-((Sqrt[2]*(A - B + C)*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])])/(
Sqrt[a]*d)) + (2*A*Sin[c + d*x])/(5*d*Cos[c + d*x]^(5/2)*Sqrt[a + a*Cos[c + d*x]]) - (2*(A - 5*B)*Sin[c + d*x]
)/(15*d*Cos[c + d*x]^(3/2)*Sqrt[a + a*Cos[c + d*x]]) + (2*(13*A - 5*B + 15*C)*Sin[c + d*x])/(15*d*Sqrt[Cos[c +
 d*x]]*Sqrt[a + a*Cos[c + d*x]])

Rule 3043

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((c^2*C - B*c*d + A*d^2)*Cos[e +
 f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(n + 1)*(c^2 - d^2)), x] + Dist[1/(b*d*(n + 1)
*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a*d*m + b*c*(n + 1)) + (c*C -
 B*d)*(a*c*m + b*d*(n + 1)) + b*(d*(B*c - A*d)*(m + n + 2) - C*(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x],
x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2,
 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0])

Rule 2984

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x]
)^(n + 1))/(f*(n + 1)*(c^2 - d^2)), x] + Dist[1/(b*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin
[e + f*x])^(n + 1)*Simp[A*(a*d*m + b*c*(n + 1)) - B*(a*c*m + b*d*(n + 1)) + b*(B*c - A*d)*(m + n + 2)*Sin[e +
f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && LtQ[n, -1] && (IntegerQ[n] || EqQ[m + 1/2, 0])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2782

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[(-2*a)/f, Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, (b*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c
+ d*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac{7}{2}}(c+d x) \sqrt{a+a \cos (c+d x)}} \, dx &=\frac{2 A \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x) \sqrt{a+a \cos (c+d x)}}+\frac{2 \int \frac{-\frac{1}{2} a (A-5 B)+\frac{1}{2} a (4 A+5 C) \cos (c+d x)}{\cos ^{\frac{5}{2}}(c+d x) \sqrt{a+a \cos (c+d x)}} \, dx}{5 a}\\ &=\frac{2 A \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x) \sqrt{a+a \cos (c+d x)}}-\frac{2 (A-5 B) \sin (c+d x)}{15 d \cos ^{\frac{3}{2}}(c+d x) \sqrt{a+a \cos (c+d x)}}+\frac{4 \int \frac{\frac{1}{4} a^2 (13 A-5 B+15 C)-\frac{1}{2} a^2 (A-5 B) \cos (c+d x)}{\cos ^{\frac{3}{2}}(c+d x) \sqrt{a+a \cos (c+d x)}} \, dx}{15 a^2}\\ &=\frac{2 A \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x) \sqrt{a+a \cos (c+d x)}}-\frac{2 (A-5 B) \sin (c+d x)}{15 d \cos ^{\frac{3}{2}}(c+d x) \sqrt{a+a \cos (c+d x)}}+\frac{2 (13 A-5 B+15 C) \sin (c+d x)}{15 d \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}+\frac{8 \int -\frac{15 a^3 (A-B+C)}{8 \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}} \, dx}{15 a^3}\\ &=\frac{2 A \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x) \sqrt{a+a \cos (c+d x)}}-\frac{2 (A-5 B) \sin (c+d x)}{15 d \cos ^{\frac{3}{2}}(c+d x) \sqrt{a+a \cos (c+d x)}}+\frac{2 (13 A-5 B+15 C) \sin (c+d x)}{15 d \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}+(-A+B-C) \int \frac{1}{\sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}} \, dx\\ &=\frac{2 A \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x) \sqrt{a+a \cos (c+d x)}}-\frac{2 (A-5 B) \sin (c+d x)}{15 d \cos ^{\frac{3}{2}}(c+d x) \sqrt{a+a \cos (c+d x)}}+\frac{2 (13 A-5 B+15 C) \sin (c+d x)}{15 d \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}+\frac{(2 a (A-B+C)) \operatorname{Subst}\left (\int \frac{1}{2 a^2+a x^2} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}\right )}{d}\\ &=-\frac{\sqrt{2} (A-B+C) \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}\right )}{\sqrt{a} d}+\frac{2 A \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x) \sqrt{a+a \cos (c+d x)}}-\frac{2 (A-5 B) \sin (c+d x)}{15 d \cos ^{\frac{3}{2}}(c+d x) \sqrt{a+a \cos (c+d x)}}+\frac{2 (13 A-5 B+15 C) \sin (c+d x)}{15 d \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 8.00007, size = 1950, normalized size = 10.21 \[ \text{result too large to display} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(7/2)*Sqrt[a + a*Cos[c + d*x]]),x]

[Out]

(4*B*Cos[c/2 + (d*x)/2]*Sin[c/2 + (d*x)/2])/(5*d*Sqrt[a*(1 + Cos[c + d*x])]*(1 - 2*Sin[c/2 + (d*x)/2]^2)^(5/2)
) - (C*Cos[c/2 + (d*x)/2]*Sin[c/2 + (d*x)/2])/(d*Sqrt[a*(1 + Cos[c + d*x])]*(1 - 2*Sin[c/2 + (d*x)/2]^2)^(5/2)
) + (16*B*Cos[c/2 + (d*x)/2]*(Sin[c/2 + (d*x)/2]/(1 - 2*Sin[c/2 + (d*x)/2]^2)^(3/2) + (2*Sin[c/2 + (d*x)/2])/S
qrt[1 - 2*Sin[c/2 + (d*x)/2]^2]))/(15*d*Sqrt[a*(1 + Cos[c + d*x])]) - (2*(A - B + C)*Cot[c/2 + (d*x)/2]*Csc[c/
2 + (d*x)/2]^6*(4725*Sin[c/2 + (d*x)/2]^2 - 48825*Sin[c/2 + (d*x)/2]^4 + 210105*Sin[c/2 + (d*x)/2]^6 - 486630*
Sin[c/2 + (d*x)/2]^8 + 655812*Sin[c/2 + (d*x)/2]^10 - 710*Hypergeometric2F1[2, 9/2, 11/2, Sin[c/2 + (d*x)/2]^2
/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]*Sin[c/2 + (d*x)/2]^10 - 40*Cos[(c + d*x)/2]^6*HypergeometricPFQ[{2, 2, 2, 9/2}
, {1, 1, 11/2}, Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]*Sin[c/2 + (d*x)/2]^10 - 518760*Sin[c/2 + (
d*x)/2]^12 + 1770*Hypergeometric2F1[2, 9/2, 11/2, Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]*Sin[c/2
+ (d*x)/2]^12 + 226656*Sin[c/2 + (d*x)/2]^14 - 1500*Hypergeometric2F1[2, 9/2, 11/2, Sin[c/2 + (d*x)/2]^2/(-1 +
 2*Sin[c/2 + (d*x)/2]^2)]*Sin[c/2 + (d*x)/2]^14 - 42048*Sin[c/2 + (d*x)/2]^16 + 440*Hypergeometric2F1[2, 9/2,
11/2, Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]*Sin[c/2 + (d*x)/2]^16 + 4725*ArcTanh[Sqrt[Sin[c/2 +
(d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]]*Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)] - 56700*Ar
cTanh[Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]]*Sin[c/2 + (d*x)/2]^2*Sqrt[Sin[c/2 + (d*x)/2]^2
/(-1 + 2*Sin[c/2 + (d*x)/2]^2)] + 291060*ArcTanh[Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]]*Sin
[c/2 + (d*x)/2]^4*Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)] - 833760*ArcTanh[Sqrt[Sin[c/2 + (d*
x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]]*Sin[c/2 + (d*x)/2]^6*Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)
/2]^2)] + 1458000*ArcTanh[Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]]*Sin[c/2 + (d*x)/2]^8*Sqrt[
Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)] - 1598400*ArcTanh[Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/
2 + (d*x)/2]^2)]]*Sin[c/2 + (d*x)/2]^10*Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)] + 1080000*Arc
Tanh[Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]]*Sin[c/2 + (d*x)/2]^12*Sqrt[Sin[c/2 + (d*x)/2]^2
/(-1 + 2*Sin[c/2 + (d*x)/2]^2)] - 414720*ArcTanh[Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]]*Sin
[c/2 + (d*x)/2]^14*Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)] + 69120*ArcTanh[Sqrt[Sin[c/2 + (d*
x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]]*Sin[c/2 + (d*x)/2]^16*Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x
)/2]^2)] + 60*Cos[(c + d*x)/2]^4*HypergeometricPFQ[{2, 2, 9/2}, {1, 11/2}, Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/
2 + (d*x)/2]^2)]*Sin[c/2 + (d*x)/2]^10*(-5 + 4*Sin[c/2 + (d*x)/2]^2)))/(675*d*Sqrt[a*(1 + Cos[c + d*x])]*(1 -
2*Sin[c/2 + (d*x)/2]^2)^(7/2)*(-1 + 2*Sin[c/2 + (d*x)/2]^2)) + (C*Cos[c/2 + (d*x)/2]*((3*Sin[c/2 + (d*x)/2])/(
1 - 2*Sin[c/2 + (d*x)/2]^2)^(5/2) + 4*(Sin[c/2 + (d*x)/2]/(1 - 2*Sin[c/2 + (d*x)/2]^2)^(3/2) + (2*Sin[c/2 + (d
*x)/2])/Sqrt[1 - 2*Sin[c/2 + (d*x)/2]^2])))/(15*d*Sqrt[a*(1 + Cos[c + d*x])])

________________________________________________________________________________________

Maple [B]  time = 0.119, size = 601, normalized size = 3.2 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2)/(a+a*cos(d*x+c))^(1/2),x)

[Out]

-1/15/d*sin(d*x+c)^2*(a*(1+cos(d*x+c)))^(1/2)*(15*A*cos(d*x+c)^3*2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*arc
sin((-1+cos(d*x+c))/sin(d*x+c))-15*B*cos(d*x+c)^3*2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*arcsin((-1+cos(d*x
+c))/sin(d*x+c))+15*C*cos(d*x+c)^3*2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*arcsin((-1+cos(d*x+c))/sin(d*x+c)
)+30*A*cos(d*x+c)^2*2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*arcsin((-1+cos(d*x+c))/sin(d*x+c))-30*B*cos(d*x+
c)^2*2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*arcsin((-1+cos(d*x+c))/sin(d*x+c))+30*C*cos(d*x+c)^2*2^(1/2)*(c
os(d*x+c)/(1+cos(d*x+c)))^(3/2)*arcsin((-1+cos(d*x+c))/sin(d*x+c))+15*A*cos(d*x+c)*2^(1/2)*(cos(d*x+c)/(1+cos(
d*x+c)))^(3/2)*arcsin((-1+cos(d*x+c))/sin(d*x+c))-15*B*cos(d*x+c)*2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*ar
csin((-1+cos(d*x+c))/sin(d*x+c))+15*C*cos(d*x+c)*2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*arcsin((-1+cos(d*x+
c))/sin(d*x+c))+26*A*sin(d*x+c)*cos(d*x+c)^2-10*B*sin(d*x+c)*cos(d*x+c)^2+30*C*sin(d*x+c)*cos(d*x+c)^2-2*A*sin
(d*x+c)*cos(d*x+c)+10*B*sin(d*x+c)*cos(d*x+c)+6*A*sin(d*x+c))/a/(-1+cos(d*x+c))/(1+cos(d*x+c))^2/cos(d*x+c)^(5
/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.094, size = 512, normalized size = 2.68 \begin{align*} \frac{2 \,{\left ({\left (13 \, A - 5 \, B + 15 \, C\right )} \cos \left (d x + c\right )^{2} -{\left (A - 5 \, B\right )} \cos \left (d x + c\right ) + 3 \, A\right )} \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right ) - \frac{15 \, \sqrt{2}{\left ({\left (A - B + C\right )} a \cos \left (d x + c\right )^{4} +{\left (A - B + C\right )} a \cos \left (d x + c\right )^{3}\right )} \arctan \left (\frac{\sqrt{2} \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right )}{2 \,{\left (\cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt{a}}\right )}{\sqrt{a}}}{15 \,{\left (a d \cos \left (d x + c\right )^{4} + a d \cos \left (d x + c\right )^{3}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/15*(2*((13*A - 5*B + 15*C)*cos(d*x + c)^2 - (A - 5*B)*cos(d*x + c) + 3*A)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(
d*x + c))*sin(d*x + c) - 15*sqrt(2)*((A - B + C)*a*cos(d*x + c)^4 + (A - B + C)*a*cos(d*x + c)^3)*arctan(1/2*s
qrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))*sin(d*x + c)/((cos(d*x + c)^2 + cos(d*x + c))*sqrt(a)))/sqr
t(a))/(a*d*cos(d*x + c)^4 + a*d*cos(d*x + c)^3)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)**2)/cos(d*x+c)**(7/2)/(a+a*cos(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A}{\sqrt{a \cos \left (d x + c\right ) + a} \cos \left (d x + c\right )^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)/(sqrt(a*cos(d*x + c) + a)*cos(d*x + c)^(7/2)), x)